ساخت و اصلاح سطح غشای نانوصافشی بر پایه پلی‌اترسولفون با استفاده از پلی(متیل متاکریلات)-نانوصفحه‌های گرافن اکسید

نوع مقاله : پژوهشی

نویسندگان

اراک، دانشگاه اراک، دانشکده فنی و مهندسی، گروه مهندسی شیمی، کد پستی 8349-8-38156

چکیده

فرضیه‌: در این پژوهش، ابتدا غشای نانوصافشی بر پایه  پلی‌اترسولفون با روش تغییر فاز-غوطه‌ورسازی تهیه شد. سپس، غشاهای تهیه‌شده با پلی(متیل متاکریلات)-نانوصفحه‌های گرافن اکسید به روش پوشش‌دهی سطح اصلاح شدند. اثر لایه‌ فعال ایجادشده بر ساختار غشا، خواص‌ فیزیکی-شیمیایی، عملکرد ضدگرفتگی و قابلیت جداسازی آن در حذف یون‌های فلزی از پساب بررسی شد.
روش‌ها: مشخصات اولیه غشاها با عکس‌های میکروسکوپ الکترون پویشی و طیف‌سنجی زیرقرمز 
تبدیل فوریه-پرتو فرابنفش ارزیابی شد. همچنین، اثر لایه سطحی شکل‌گرفته بر خواص فیزیکی و شیمیایی غشاها از جمله زاویه تماس آب، شار و پس‌زنی نمک سدیم سولفات، شار آب خالص، تخلخل، اندازه حفره‌ها، پس‌زنی فلزات سنگین و تغییرات مقاومت غشا در برابر گرفتگی بررسی ‌شد. 
یافته‌ها: نتایج نشان داد، نمونه اصلاح‌شده با %1 وزنی متیل متاکریلات-%5/0 وزنی نانوصفحه‌های گرافن اکسید، دارای عملکرد جداسازی مناسب‌تر و خواص ضدگرفتگی بهتری در مقایسه با سایر غشاهاست. تصاویر میکروسکوپ الکترونی پویشی تهیه‌‌شده از مقطع عرضی غشاها، تشکیل لایه نسبتاَ یکنواختی را بر سطح غشاها نشان داد که با افزایش مقدار نانوصفحه‌های گرافن اکسید تراکم یافته است. عملکرد غشای بهینه در حذف دو فلز سنگین مس و کروم بررسی شد و نتایج با غشای پایه مقایسه شد. درصد حذف دو فلز سنگین با غشای پایه به‌ترتیب برابر 49.3 و %51.4 و برای غشای بهینه 81.7 و %75.3 اندازه‌گیری شد. همچنین، مقدار گرفتگی کل برای غشای پایه حدود %23 اندازه‌گیری شد، در حالی که این پارامتر برای نمونه اصلاح‌شده بهینه %13.2 بود (0.05> P value). مقدار گرفتگی بازگشت‌ناپذیر غشای بهینه به‌مقدار شایان توجهی از %20 در غشای پایه به %3.2 در این نمونه کاهش یافت که نشان از عملکرد ضدگرفتگی مناسب غشای اصلاح‌شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and Surface Modification of PES-Based Nanofiltration Membrane Using Polymethyl Methacrylate/Graphene Oxide Nanoplates

نویسندگان [English]

  • Pejman Asgari
  • Saba Sohrabnejad
  • Samaneh Koudzari Farahani
  • Meysam Soleymani
  • Sayed Mohsen Hosseini
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak , Postal Code 38156-8-8349, Iran
چکیده [English]

Hypothesis: first, poly ether sulfone (PES)-based nanofiltration (NF) membranes were prepared through the phase inversion-immersion precipitation technique. Then, the surface of the membranes made of polymethyl methacrylate (PMMA)-graphene oxide nanoplates (GO NPs) was modified using dip-coating technique. The effect of the active coating layer on the morphology, physical-chemical properties, and antifouling performance and separation ability to remove metal ions from wastewater was studied.
Methods: The properties of prepared membranes were studied by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analysis.  Also, the effect of the formed active layer on the physio-chemical properties of the membrane including water contact angle, water content, flux and sodium sulfate rejection, porosity, mean pore size, heavy metal rejection and anti-fouling performance was investigated. 
Findings:  The obtained results revealed that the surface-modified membrane with 1 % (by wt)  MM-0.5% (by wt) GO-NPs had a more appropriate separation performance and better antifouling properties compared to other membranes. SEM images of the cross-sectional area of the membranes showed the formation of a relatively uniform layer on the membrane surface, which became more dense with increase in the amount of GO-Nps. The performance of the modified membrane in the removal of Cu and Cr heavy metal ions was also evaluated and compared with the pristine membrane. The removal percentage of Cu and Cr ions was 51.4% and 49.3% for the neat membrane, whereas it was 81.7% and 75.3% for the superior modified membrane, respectively. Moreover, the total fouling resistance was measured to be 23% for the virgin membrane, while it was 13.2% (Pvalue<0.05) for the best modified one. The irreversible fouling parameter was obviously decreased from 20% for the pristine membrane to 3.2% for the optimum modified membrane that shows  a superior antifouling ability for them. 

کلیدواژه‌ها [English]

  • nanofiltration membrane
  • surface modification
  • polymethyl methacrylate/graphene oxide nanoplate’s active layer
  • separation performance
  • antifouling ability
  1. Hosseini S.M., Chehreh M., Jashni E., and Shen J.N., Electrochemical Characterization of Electrodialysis Cation Exchange Membrane Incorporated with Graphite Nanoparticle for Deionization, Ionics, 26 ,1525-1535, 2020.
  2. Moghadassi A.R., Bagheripour E., and Hosseini S.M., Fabrication and Modification of Polyvinylchloride-based Nanofiltration Membrane by Using Sodium Dodecyl Sulfate as Anionic Surfactant for Water Treatment, Pet. Res., 25, 61-71, 2015.
  3. Hosseini S.M., Nemati M., and Rafiei N., Surface Modification of Cation Exchange Membranes Using Chitosan-co-PANI/Graphene Oxide Nanocomposite Layer, J. Polym. Sci. Technol. (Persian), 31, 435-446, 2018.
  4. Hosseini S.M., Rahzani B., Asiani H., Khodabakhshi A.R., Hamidi A.R., Madaeni S.S., and Moghadassi A.R., and Seidypoor A., Surface Modification of Heterogeneous Cation Exchange Membranes Bysimultaneous Using Polymerization of (acrylic acid-co-methyl methacrylate): Membrane Characterization in Desalination Process, Desalination, 345, 13-20, 2014.
  5. Mirzamohammadi M., Koudzari Farahani S., Parvizian F., and Hosseini S.M., Surface Modification of Nanofiltration Membrane Using Polyvinyl Alcohol and Chitosan-Functionalized Activated Carbon Nanoparticles, J. Polym. Sci. Technol. (Persian), 34, 349-358, 2021.
  6. Igwe J.C. and Abia A.A., Equilibrium Sorption Isotherm Studies of Cd (II), Pb (II) and Zn (II) Ions Detoxification from Waste Water Using Unmodified and EDTA-Modified Maize Husk, Electronic J. Biotech., 10, 536-548, 2007.
  7. Lofrano G., Carotenuto M., Libralato G., Domingos R.F., Markus A., Dini L., Gautam R.K., Baldantoni D., Rossi M., and Sharma S.K., Polymer Functionalized Nanocomposites for Metals Removal from Water and Wastewater: An Overview, Water Res., 92, 22-37, 2016.
  8. Suhag A., Gupta R., and Tiwari A., Biosorptive Removal of Heavy Metals from Wastewater Using Duckweed, J. Biomed. Adv. Res., 2, 281-290, 2011.
  9. Bandehali S., Moghadassi A.R., Parvizian F., Zhang Y., Hosseini S.M., and Shen J.N., New Mixed Matrix PEI Nanofiltration Membrane Decorated by Glycidyl-Poss Functionalized Graphene Oxide Nano Plates with Enhanced Separation and Antifouling Behavior: Heavy Metal Ions Removal, Purif. Technol., 242, 116745, 2020.
  10. Suhad A., Gupta R., and Tiwari A., Biosorptive Removal of Heavy Metal Zinc from Synthetic Wastewater Using Duckweed, J. Biomed. Res., 2, 542-547, 2011.
  11. Verberk J., Post J., Van der Meer W., and Van Dijk J., Direct Capillary Nanofiltration for Ground Water and Surface Water Treatment, Water Sci. Technol., Water Supply, 2, 277-283, 2002.
  12. Luo J., Ding L., Chen X., and Wan Y., Desalination of Soy Sauce by Nanofiltration, Purif. Technol., 66, 429-437, 2009.
  13. Du R.H. and Zhao J.S., Properties of Poly(N,N dimethyl amino ethyl methac-rylate)/Poly Sulfone Positively Charged Composite Nanofiltration Membrane, Membr. Sci., 239, 183-188, 2004.
  14. Ng, L.Y., Mohammad A.W., Leo C.P., and Hilal N., Polymeric Membranes Incorporated with Metal/Metal Oxide Nanoparticles: A Comprehensive Review, Desalination, 308, 15-33, 2013.
  15. Chiang Y., Hsub Y., Ruaan R., Chuang C., and Tung K., Nanofiltration Membranes Synthesized from Hyperbranched Polyethyleneimine, Membr. Sci., 326, 19-26, 2009.
  16. Wang L., Boutilier M.S.H., Kidambi P.R., Jang D., Hadjiconstantinou N.G., and Karnik R., Fundamental Transport Mechanisms, Fabrication and Potential Applications of Nanoporous Atomically Thin Membranes, Nanotechnol., 12, 509-522, 2017.
  17. Somrani A., Hamzaoui A.H., and Pontie M., Study on Lithium Separation from Salt Lake Brines by Nanofiltration (NF) and Low-Pressure Reverse Osmosis (LPRO), Desalination, 317, 184-192, 2013.
  18. Li X., Li J., Fang X., Bakzhan K., Wang L., and Vander Bruggen B., A Synergetic Analysis Method for Antifouling Behavior Investigation on PES Ultrafiltration Membrane with Self-Assembled TiO2 Nanoparticles, Colloid Interface Sci., 469, 164-176, 2016.
  19. Rong G., Hua D., Cuihua L., Jianhong L., and Jing X., Effect of Casting Solvent on the Morphology and Performance of Sulfonated Polyether Sulfone Membranes., Membr. Sci., 277, 148-156, 2006.
  20. Tang C.Y., Kwon Y.N., and Leckie J.O., Probing the Nano- and Micro-Scalesof Reverse Osmosis Membranes-A Comprehensive Characterization of Physiochemical Properties of Uncoated and Coated Membranes by XPS, TEM, ATR-FTIR, and Streaming Potential Measurements, Membr. Sci., 287, 146-156, 2007.
  21. Xu G.R., Wang J.N., and Li C.J., Strategies for Improving the Performance of the Polyamide Thin Film Composite (PA-TFC) Reverse Osmosis (RO) Membranes: Surface Modifications and Nanoparticles Incorporations, Desalination, 328, 83-100, 2013.
  22. Bhattacharya A. and Misra B.N., Grafting: A Versatile Means to Modifypolymers Techniques, Factors and Applications, Polym. Sci., 29, 767-814, 2004.
  23. Kochkodan V. and Hilal N., A Comprehensive Review on Surface Modified Polymer Membranes for Biofouling Mitigation, Desalination, 356, 187-207, 2015.
  24. Vatanpour V., Madaeni S.S., Moradian R., Zinadini S., and Astinchap B., Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite, Membr. Sci., 375, 284-294, 2011.
  25. Wang Z., Yu H., Xia J., Zhang F., Li F., Xia Y., and Li Y., Novel GO-Blended PVDF Ultrafiltration Membranes, Desalination, 299, 50-54, 2012.
  26. Ganesh B., Isloor A.M., and Ismail A.F., Enhanced Hydrophilicity and Salt Rejection Study of Graphene Oxide-Polysulfone Mixed Matrix Membrane, Desalination, 313, 199-207, 2013.
  27. Zinadini S., Zinatizadeh A.A., Rahimi M., Vatanpour V., and Zangeneh H., Preparation of a Novel Antifouling Mixed Matrix PES Membrane by Embedding Graphene Oxide Nanoplates, Membr. Sci., 453, 292-301, 2014.
  28. Bano S., Mahmood A., Kim S.J., and Lee K.H., Graphene Oxide Modified Polyamide Nanofiltration Membrane with Improved Flux and Antifouling Properties, Mat. Chem. A, 3, 2065-2071, 2015.
  29. Zhao D., Yu Y., and Chen J.P., Treatment of Lead Contaminated Water by a PVDF Membrane that is Modified by Zirconium, Phosphate and PVA, Water Res., 101, 564-573, 2016.
  30. Shaabani N., Zinadini S., and Zinatizadeh A.A., Preparation and Characterization of PES Nanofiltration Membrane Embedded with Modified Graphene Oxide for Dye Removal from Algal Wastewater, Appl. Res. Wastewater, 5, 407-410, 2018.
  31. Bagheripour E., Moghadassi A.R, Hosseini S.M., Van der Bruggen B., and Parvizian F., Novel Composite Graphene Oxide/Chitosan Nanoplates Incorporated into PES Based Nanofiltration Membrane: Chromium Removal and Antifouling Enhancement, Ind. Eng. Chem., 62, 311-320, 2018.
  32. Albeladi H.K., Al-Romaizan A.N., and Hussein M.A., Role of Cross-linking Process on the Performance of PMMA, J. Biosens. Bioelectron, 3, 279-284, 2017.
  33. Sivakumar M., Mohanasundaram A., Mohan D., Balu K., and Rangarajan R., Modification of Cellulose Acetate: Its Characterization and Application as an Ultrafiltration Membrane, Appl. Polym. Sci., 67, 1939-1946, 1998.
  34. Hamid N., Ismail A., Matsuura T., Zularisam A., Lau W., Yuliwati E., and Abdullah M., Morphological and Separation Performance Study of Polysulfone/Titanium Dioxide (PSF/TiO2) Ultrafiltration Membranes for Humic Acid Removal, Desalination, 273, 85-92, 2011.
  35. Vatanpour V., Madaeni S.S., Moradian R., Zinadini S., and Astinchap B., Novel Antibifouling Nanofiltration Polyethersulfone Membrane Fabricated from Embedding TiO2 Coated Multiwalled Carbon Nanotubes, Purif. Technol., 90 ,69-82, 2012.
  36. Zhang Q., Fan L., Yang Z., Zhang R., Liu Y.N., He M., Su Y., and Jiang Z., Loose Nanofiltration Membrane for Dye/Salt Separation through Interfacial Polymerization with in Situ Generated TiO2 Nanoparticles, Surf. Sci., 410, 494-504, 2017.
  37. Shen L., Bian X., Lu X., Shi L., Liu Z., Chen L., Hou Z., and Fan K., Preparation and Characterization of ZnO/Polyethersulfone (PES) Hybrid Membranes, Desalination, 293, 21-29, 2012.
  38. Farrokhnia M., Rashidzadeh M., Safekordi A., and Khanbabaei G., Fabrication and Evaluation of Nanocomposite Membranes of Polyethersulfone/Α-Alumina for Hydrogen Separation, Polym. J., 24, 171-183, 2015.
  39. Ghiggi F.F., Pollo L.D., Cardozo N.S., and Tessaro I.C., Preparation and Characterization of Polyethersulfone/N-Phthaloyl-Chitosan Ultrafiltration Membrane with Antifouling Property, Polym. J., 92, 61-70, 2017.
  40. Homayoonfal M., Akbari A., and Mehrnia M.R., Preparation of Polysulfone Nanofiltration Membranes by UV-Assisted Grafting Polymerization for Water Softening, Desalination, 263, 217-225, 2010.
  41. Shen J., Yu C.C., Ruan H.M., Gao C., and Van der Bruggen B., Preparation and Characterization of Thin-Film Nanocomposite Membranes Embedded with Poly(methyl methacrylate) Hydrophobic Modified Multiwalled Carbon Nanotubes by Interfacial Polymerization, Membr. Sci., 442, 18-26, 2013.
  42. Bagheripour E., Moghadassi A.R, and Hosseini S.M., Preparation of Mixed Matrix PES-Based Nanofiltration Membrane Filled with PANI-co-MWCNT Composite Nanoparticles, Korean J. Chem. Eng., 33, 1462-1471, 2016.
  43. Mobarakabad P., Moghadassi A.R., and Hosseini S.M., Fabrication and Characterization of Poly(phenylene ether-ether sulfone) Based Nanofiltration Membranes Modified by Titanium Dioxide Nanoparticles for Water Desalination, Desalination, 365, 227-233, 2015.
  44. Daraei P., Madaeni S.S., Salehi E., Ghaemi N., Ghari H.S., Khadivi M.A., and Rostami E., Novel Thin Film Composite Membrane Fabricated by Mixed Matrix Nanoclay/Chitosan on PVDF Microfiltration Support: Preparation, Characterization and Performance in Dye Removal, Membr. Sci., 436, 97-108, 2013.
  45. Vatanpour V., Madaeni S.S., Khataee A.R., Salehi E., Zinadini S., and Monfared H.A., TiO2 Embedded Mixed Matrix PES Nanocomposite Membranes: Influence of Different Sizes and Types of Nanoparticles on Antifouling and Performance, Desalination, 292,19-29, 2012.
  46. Belfer, S., Fainshtain R., Purinson Y., Gilron J., Nyström M., and Mänttäri M., Modification of NF Membrane Properties by in Situ Redox Initiated Graft Polymerization with Hydrophilic Monomers, Membr. Sci., 239, 55-64, 2004.
  47. Hosseini S.M., Moradi F., Farahani S.K., Bandehali S., Parvizian F., Ebrahimi M., and Shen J.N., Carbon Nanofibers/Chitosan Nanocomposite Thin Film for Surface Modification of Poly(ether sulphone) Nanofiltration Membrane, Chem. Phys., 124720, 2021.
  48. López M.S., Lee I.P., Fouconnier B., and Serrano F.L., Polimerización en Emulsión de Estireno Utilizando SiO2, Cienc. Tecnol., 37, 19-29, 2021.
  49. Ghaemi N., Zereshki S., and Heidari S., Removal of Lead Ions from Water Using PES-Based Nanocomposite Membrane Incorporated with Polyaniline Modified GO Nanoparticles: Performance Optimization by Central Composite Design, Process Saf. Environ. Prot., 111, 475-490, 2017.
  50. Najafpour M., Sohrabnejad S., Jiriaei Sharahi Z., Karami S., and Hosseini S.M., Fabrication of Bi-Layer Polyethersulfone Based Nanofiltration Membrane by Use of Chitosan/Zeolite Nanocomposite Layer, J. Polym. Sci. Technol. (Persian), 36, 393-407, 2023.
  51. Karami S., Jiriaei Sharahi Z., Koudzari Farahani S., Solhi S., and Hosseini S.M., Novel Thin-Film, Chitosan-Polyaniline Nanofiltration Membrane Effectively Removes Toxic Heavy Metals from Wastewaters, J. Toxic., 17, 105-116, 2023.
  52. Hosseini S.M., Banijamali M.S., Farahani S.K., and Bandehali S., Enhancing Antifouling and Separation Characteristics of Carbon Nanofiber Embedded Polyether Sulfone Nanofiltration Membrane, Korean J. Chem. Eng., 39, 2491-2498, 2022.