مروری بر مواد انتقال‌دهنده الکترون ‌بر پایه پلیمرهای نوع-n در سلول‌های خورشیدی پروسکیت معکوس

نوع مقاله : مروری

نویسندگان

اصفهان، دانشگاه اصفهان، دانشکده شیمی، کد پستی ٨١۷۴٦۷۳۴۴١

چکیده

سلول‌های خورشیدی پروسکیت با وجود چالش پایداری که با آن مواجه هستند، پیشرفت‌های شایان توجهی داشته‌اند. پیش‌بینی می‌شود، این روند با توجه به علم مهندسی کامپوزیت و مواد تشکیل‌دهنده لایه‌ها، برای دستیابی به سلول‌های  کارآمد و با ثبات زیاد در بلندمدت، همچنان ادامه داشته باشد. یکی از اجزا و لایه اصلی تشکیل‌دهنده سلول‌های خورشیدی پروسکیت، ماده انتقال‌دهنده الکترون است که در انتقال و استخراج الکترون و بازده سلول نقش تعیین‌کننده‌ای دارد. مواد انتقال‌دهنده الکترون براساس اجزای تشکیل‌دهنده به انواع مختلف آلی، غیرآلی و پلیمری تقسیم‌بندی می‌شوند. از این میان، مواد انتقال‌دهنده الکترون پلیمری با توجه به محدودیت‌های موجود در انواع دیگر و خواص ویژه‌ای که نشان می‌دهند، مورد توجه قرار گرفته‌اند. مشتقات فولرن از مواد انتقال‌دهنده الکترون آلی هستند که حل‌پذیری و تحرک الکترونی مناسبی ندارند. اما، در مواد انتقال‌دهنده الکترون پلیمری امکان اتصال گروه‌های عاملی متفاوت به واحد هسته مرکزی ماده وجود دارد که سبب ایجاد تغییرات معنادار در پارامترهای فوتوولتایی سلول می‌شود. با انتخاب مواد انتقال‌دهنده الکترون پلیمری قابلیت دستیابی به برتری‌هایی مانند تحرک الکترونی زیاد، خالص‌سازی آسان، حل‌پذیری مناسب برای فراوری حین لایه‌نشانی و پایداری مطلوب وجود دارد. از مواد انتقال‌دهنده الکترون پلیمری با هسته‌های مرکزی مختلف مانند نفتالن دی‌ایمین، پریلن‌دی‌ایمید و بیس‌تیوفن ایمید به‌دلیل تحرک الکترونی زیاد و نیازنداشتن به مواد افزودنی، بیشتر در سلول‌های خورشیدی پروسکیت معکوس استفاده شده است. در این میان، بیشترین بازده (%20.43) به سلول دارای پلیمر  PPDIN6 با هسته مرکزی پریلن‌دی‌ایمید مربوط است. افزون بر این، پژوهشگران از پلیمرهای نوع-n برای اصلاح، ارتباط مؤثر میان لایه‌ها و بهبود پارامترهای فوتوولتایی سلول‌های خورشیدی پروسکیت معکوس استفاده می‌کنند. این مقاله مروری نشان می‌دهد، انتخاب مواد انتقال‌دهنده الکترون پلیمری همراه با هسته‌های مرکزی خاص، با تغییرات اساسی می‌تواند به نتایج مطلوبی از نظر عملکرد و پایداری در سلول‌های خورشیدی پروسکیت منجر شود.

کلیدواژه‌ها


عنوان مقاله [English]

Electron Transporting Materials Based on n-Type Polymers in Inverted Perovskite Solar Cells: A Review

نویسندگان [English]

  • Atieh Feda
  • mostafa moslempoor
  • Esmaeil Sheibani
Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
چکیده [English]

Perovskite solar cells (PSCs), despite the stability challenges they face, have made significant progress. It is predicted that this trend will continue due to the progress in composite engineering and the materials that make up the layers. It is expected to continue to achieve high performance and long-term stability in these cells. One of the key components and layers in PSCs is “electron transporting material” (ETM), playing a crucial role in electron transfer, extraction, and cell efficiency. ETMs are categorized into various types based on their constituent materials, including inorganic, organic, and polymer-based ETMs. Polymeric ETMs are of particular importance due to their unique properties and considering the limitations in other types of ETMs. Fullerene derivatives, which are organic ETMs, lack adequate electron mobility and solubility. However, in polymeric ETMs, the ability to connect different functional groups to their central core creates significant changes in the photovoltaic parameters of the cell. By choosing polymeric ETMs, potential advantages such as high electron mobility, easy purification, suitable solubility for processing during layer deposition, and desirable stability can be achieved. Polymeric ETMs with various central cores such as naphthalenediimide (NDI), perylenediimide (PDI), and bithiopheneimide (BTI) have been widely used in reverse PSCs due to their high electron mobility and the absence of additives. Among them, the highest efficiency (20.43%) relates to a cell containing the PDI-core polymer PPDIN6. Additionally, researchers use n-type polymers to modify, create effective interlayer connections, and improve the photovoltaic parameters of reverse PSCs. This review article highlights that the selection of polymeric ETMs along with specific central cores can lead to meaningful changes, resulting in desirable performance and stability in PSCs.

کلیدواژه‌ها [English]

  • perovskite solar cells
  • polymeric electron transporter materials
  • power conversion efficiency
  • conjugated polymers
  • stability
  1. Lamichhane A. and Ravindra N.M., Energy Gap-Refractive Index Relations in Perovskites, Materials (Basel), 13, 2020.
  2. Saouma F.O., Park D.Y., Kim S.H., Jeong M.S., and Jang J.I., Multiphoton Absorption Coefficients of Organic–Inorganic Lead Halide Perovskites CH3NH3PbX3 (X = Cl, Br, I) Single Crystals, Mater., 29, 6876-6882, 2017.
  3. Herz L.M., Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits, ACS Energy Lett., 2, 1539-1548, 2017.
  4. Khatoon S., Yadav S.K., Chakravorty V., Singh J., Singh R.B., Hasnain M.S., and Hasnain S.M., Perovskite Solar Cell’s Efficiency, Stability and Scalability: A Review, Mater. Sci. Energy Technol., 6, 437-459, 2023.
  5. Lin X., Cui D., Luo X., Zhang C., Han Q., Wang Y., and Han L., Efficiency Progress of Inverted Perovskite Solar Cells, Energy Environ. Sci., 13, 3823-3847, 2020.
  6. Meng L., You J., Guo T.-F., and Yang Y., Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells, Accounts Chem. Res., 49, 155-165, 2016.
  7. Liu Z., Krückemeier L., Krogmeier B., Klingebiel B., Márquez J.A., Levcenko S., Öz S., Mathur S., Rau U., Unold T., and Kirchartz T., Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells, ACS Energy Lett., 4, 110-117, 2018.
  8. Kim M., Kim G.-H., Lee T.K., Choi I.W., Choi H.W., Jo Y., Yoon Y.J., Kim J.W., Lee J., Huh D., Lee H., Kwak S.K., Kim J.Y., and Kim D.S., Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells, Joule, 3, 2179-2192, 2019.
  9. Zhu H., Liu Y., Eickemeyer F.T., Pan L., Ren D., Ruiz-Preciado M.A., Carlsen B., Yang B., Dong X., Wang Z., Liu H., Wang S., Zakeeruddin S.M., Hagfeldt A., Dar M.I., Li X., and Gratzel M., Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency, Adv Mater., 32, e1907757, 2020.
  10. Molina D., Sheibani E., Yang B., Mohammadi H., Ghiasabadi M., Xu B., Suo J., Carlsen B., Vlachopoulos N., Zakeeruddin S.M., Grätzel M., and Hagfeldt A., Molecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells: The Substituent Effect on Non-fused Three-Dimensional Systems, ACS Appl. Energy Mater., 5, 3156-3165, 2022.
  11. Wang L., Zhou H., Hu J., Huang B., Sun M., Dong B., Zheng G., Huang Y., Chen Y., and Li L., A Eu3+-Eu2+ Ion Redox Shuttle Imparts Operational Durability to Pb-I Perovskite Solar Cells, Science, 363, 265-270, 2019.
  12. McMeekin D.P., Sadoughi G., Rehman W., Eperon G.E., Saliba M., Hörantner M.T., Haghighirad A., Sakai N., Korte L., and Rech B., A Mixed-Cation Lead Mixed-Halide Perovskite Absorber for Tandem Solar Cells, Science, 351, 151-155, 2016.
  13. Noel N.K., Stranks S.D., Abate A., Wehrenfennig C., Guarnera S., Haghighirad A.-A., Sadhanala A., Eperon G.E., Pathak S.K., and Johnston M.B., Lead-Free Organic–Inorganic Tin Halide Perovskites for Photovoltaic Applications, Energy Environ. Sci., 7, 3061-3068, 2014.
  14. Alidaei M., Izadifard M., Ghazi M.E., and Ahmadi V., Efficiency Enhancement of Perovskite Solar Cells Using Structural and Morphological Improvement of CH3NH3PbI3 Absorber Layers, Res. Express, 5, 016412, 2018.
  15. Askari M.B., Mirazaei V., and Mirhabibi M., Types of Solar Cells and Application, J. Opt. Photon., 3, 94-113, 2015.
  16. Foo S., Thambidurai M., Senthil Kumar P., Yuvakkumar R., Huang Y., and Dang C., Recent Review on Electron Transport Layers in Perovskite Solar Cells, J. Energy Res., 46, 21441-21451, 2022.
  17. Sheibani E., Moslempoor M., and Arami Ghahfarokhi F., Hole-Transporting Materials Based on p-Type Polymers in Invert Perovskite Solar Cells, J. Polym. Sci. Technol. (Persian), 36, 107-132, 2023.
  18. Bahrami A., Kazeminezhad I., and Abdi Y., Pt-Ni/rGO Counter Electrode: Electrocatalytic Activity for Dye-Sensitized Solar Cell, Superlattices Microstruct., 125, 125-137, 2019.
  19. Hosseinnezhad M., Moradian S., and Gharanjig K., Novel Organic Dyes Based on Thioindigo for Dye-Sensitized Solar Cells, Dyes Pigment., 123, 147-153, 2015.
  20. Agbolaghi S., Mohammadi-Vanyar O., and Abbaspoor S., Stabilization of Polymer Solar Cells and Their Importance in Photovoltaic Systems J. Polym. Sci. Technol. (Persian), 34, 99-129, 2021.
  21. Mir N. and Salavati-Niasari M., Preparation of TiO2 Nanoparticles by Using Tripodal Tetraamine Ligands as Complexing Agent via Two-Step Sol-Gel Method and Their Application in Dye-Sensitized Solar Cells, Res. Bull., 48, 1660-1667, 2013.
  22. Mir N. and Salavati-Niasari M., Photovoltaic Properties of Corresponding Dye Sensitized Solar Cells: Effect of Active Sites of Growth Controller on TiO2 Nanostructures, Energy, 86, 3397-3404, 2012.
  23. Lindh L., Gordivska O., Persson S., Michaels H., Fan H., Chabera P., Rosemann N.W., Gupta A.K., Benesperi I., Uhlig J., Prakash O., Sheibani E., Kjaer K.S., Boschloo G., Yartsev A., Freitag M., Lomoth R., Persson P., and Warnmark K., Dye-Sensitized Solar Cells Based on Fe N-Heterocyclic Carbene Photosensitizers with Improved Rod-Like Push-Pull Functionality, Sci., 12, 16035-16053, 2021.
  24. Xu B., Sheibani E., Liu P., Zhang J., Tian H., Vlachopoulos N., Boschloo G., Kloo L., Hagfeldt A., and Sun L., Carbazole-Based Hole-Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells and Perovskite Solar Cells, Adv Mater., 26, 6629-34, 2014.
  25. Volker S.F., Collavini S., and Delgado J.L., Organic Charge Carriers for Perovskite Solar Cells, ChemSusChem, 8, 3012-28, 2015.
  26. Zhang J., Hao Y., Yang L., Mohammadi H., Vlachopoulos N., Sun L., Hagfeldt A., and sheibani E., Electrochemically Polymerized Poly(3,4-Phenylenedioxythiophene) as Efficient and Transparent Counter Electrode for Dye Sensitized Solar Cells, Acta, 300, 482-488, 2019.
  27. Cui D., Wang Y., and Han L., China’s Progress of Perovskite Solar Cells in 2019, Bull., 65, 1306-1315, 2020.
  28. Dou L., Yang Y.M., You J., Hong Z., Chang W.H., Li G., and Yang Y., Solution-Processed Hybrid Perovskite Photodetectors with High Detectivity, Commun., 5, 5404, 2014.
  29. Tan Z.-K., Moghaddam R.S., Lai M.L., Docampo P., Higler R., Deschler F., Price M., Sadhanala A., Pazos L.M., and Credgington D., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite, Nanotechnol., 9, 687-692, 2014.
  30. Ashjari T., Roghabadi F.A., and Ahmadi V., Facile Synthesis of Durable Perovskite Quantum Dots Film with Near Unity Photoluminescence Quantum Yield for Efficient Perovskite Light Emitting Diode, Surface Sci., 510, 145513, 2020.
  31. Saeedi M., Ashjari T., Roghabadi F.A., and Ahmadi V., Efficient LED Light Converter Based on Perovskite Nanocrystals for Visible Light Communication, 3rd West Asian Symposium on Optical and Millimeter-Wave Wireless Communication (WASOWC), IEEE, 1-4, 2020.
  32. Xiao K., Lin R., Han Q., Hou Y., Qin Z., Nguyen H.T., Wen J., Wei M., Yeddu V., Saidaminov M.I., Gao Y., Luo X., Wang Y., Gao H., Zhang C., Xu J., Zhu J., Sargent E.H., and Tan H., All-Perovskite Tandem Solar Cells With 24.2% Certified Efficiency and Area Over 1 cm2 Using Surface-Anchoring Zwitterionic Antioxidant, Energy, 5, 870-880, 2020.
  33. Cai B., Zhang W.-H., and Qiu J., Solvent Engineering of Spin-Coating Solutions for Planar-Structured High-Efficiency Perovskite Solar Cells, Chinese J. Catal., 36, 1183-1190, 2015.
  34. Barrows A.T., Pearson A.J., Kwak C.K., Dunbar A.D., Buckley A.R., and Lidzey D.G., Efficient Planar Heterojunction Mixed-Halide Perovskite Solar Cells Deposited via Spray-Deposition, Energy Environ. Sci., 7, 2944-2950, 2014.
  35. Zhu L., Shi J., Lv S., Yang Y., Xu X., Xu Y., Xiao J., Wu H., Luo Y., Li D., and Meng Q., Temperature-Assisted Controlling Morphology and Charge Transport Property for Highly Efficient Perovskite Solar Cells, Nano Energy, 15, 540-548, 2015.
  36. Poplavskyy D. and Nelson J., Nondispersive Hole Transport in Amorphous Films of Methoxy-Spirofluorene-Arylamine Organic Compound, Appl. Phys., 93, 341-346, 2003.
  37. Onoda-Yamamuro N., Matsuo T., and Suga H., Dielectric Study of CH3NH3PbX3 (X= Cl, Br, I), Phys. Chem. Solids, 53, 935-939, 1992.
  38. Lee S., Jeong D., Kim C., Lee C., Kang H., Woo H.Y., and Kim B.J., Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design, ACS Nano, 14, 14493-14527, 2020.
  39. Li F., Deng X., Qi F., Li Z., Liu D., Shen D., Qin M., Wu S., Lin F., Jang S.H., Zhang J., Lu X., Lei D., Lee C.S., Zhu Z., and Jen A.K., Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency, Am. Chem. Soc., 142, 20134-20142, 2020.
  40. Li B., Li Z., Wu X., and Zhu Z., Interface Functionalization in Inverted Perovskite Solar Cells: From Material Perspective, Nano Res. Energy, 1, e9120011, 2022.
  41. Yang J., Luo X., Zhou Y., Li Y., Qiu Q., and Xie T., Recent Advances in Inverted Perovskite Solar Cells: Designing and Fabrication, J. Molecul. Sci., 23, 11792, 2022.
  42. Green M., Dunlop E., Hohl-Ebinger J., Yoshita M., Kopidakis N., and Hao X., Solar Cell Efficiency Tables (version 57), Photovolt., Res. Appl., 29, 3-15, 2021.
  43. Mesquita I., Andrade L., and Mendes A., Perovskite Solar Cells: Materials, Configurations and Stability, Sustain. Energy Rev., 82, 2471-2489, 2018.
  44. Jafari M., Rahimi A., and Shokrolahi P., Surface Modification of Indium Tin Oxide Nanoparticles to Improve Its Distribution in Epoxy-Silica Polymer Matrix, J. Polym. Sci. Technol. (Persian), 27, 281-289, 2014.
  45. Dehghan M. and Behjat A., Deposition of Zinc Oxide as an Electron Transport Layer in Planar Perovskite Solar Cells by Spray and SILAR Methods Comparable with Spin Coating, RSC Adv., 9, 20917-20924, 2019.
  46. Sheibani E., Heydari M., Ahangar H., Mohammadi H., Fard H.T., Taghavinia N., Samadpour M., and Tajabadi F., 3D Asymmetric Carbozole Hole Transporting Materials for Perovskite Solar Cells, Sol Energy, 189, 404-411, 2019.
  47. Sheibani E., Yang L., and Zhang J., Recent Advances in Organic Hole Transporting Materials for Perovskite Solar Cells, RRL, 4, 2020.
  48. Mali S.S. and Hong C.K., p-i-n/n-i-pType Planar Hybrid Structure of Highly Efficient Perovskite Solar Cells towards Improved Air Stability: Synthetic Strategies and the Role of p-Type Hole Transport Layer (HTL) and n-Type Electron Transport Layer (ETL) Metal Oxides, Nanoscale, 8, 10528-10540, 2016.
  49. Li X., Haghshenas M., Wang L., Huang J., Sheibani E., Yuan S., Luo X., Chen X., Wei C., Xiang H., Baryshnikov G., Sun L., Zeng H., and Xu B., A Multifunctional Small-Molecule Hole-Transporting Material Enables Perovskite QLEDs with EQE Exceeding 20%, ACS Energy Lett., 8, 1445-1454, 2023.
  50. Feng K., Guo H., Sun H., and Guo X., n-Type Organic and Polymeric Semiconductors Based on Bithiophene Imide Derivatives, Accounts Chem. Res., 54, 3804-3817, 2021.
  51. Yu Z. and Sun L., Inorganic Hole-Transporting Materials for Perovskite Solar Cells, Small Methods, 2, 1700280, 2018.
  52. Huckaba A.J., Gharibzadeh S., Ralaiarisoa M., Roldán-Carmona C., Mohammadian N., Grancini G., Lee Y., Amsalem P., Plichta E.J., and Koch N., Low-Cost TiS2 as Hole-Transport Material for Perovskite Solar Cells, Small Methods, 1, 1700250, 2017.
  53. Heidariramsheh M., Mirhosseini M., Abdizadeh K., Mahdavi S.M., and Taghavinia N., Evaluating Cu2SnS3 Nanoparticle Layers as Hole-Transporting Materials in Perovskite Solar Cells, ACS Appl. Energy Mater., 4, 5560-5573, 2021.
  54. Maram D.K., Habibiyan H., Ghafoorifard H., and Shekoofa O., Analysis of Optimum Copper Oxide Hole Transporting Layer for Perovskite Solar Cells, 27th Iranian Conference on Electrical Engineering (ICEE), 214-219, 2019.
  55. Nhari L.M., El-Shishtawy R.M., and Asiri A.M., Recent Progress in Organic Hole Transport Materials for Energy Applications, Dyes Pigm., 193, 109465, 2021.
  56. Farokhi A., Shahroosvand H., Delle Monache G., Pilkington M., and Nazeeruddin M.K., The Evolution of Triphenylamine Hole Transport Materials for Efficient Perovskite Solar Cells, Soc. Rev., 51, 2022.
  57. Ke W., Fang G., Wan J., Tao H., Liu Q., Xiong L., Qin P., Wang J., Lei H., Yang G., Qin M., Zhao X., and Yan Y., Efficient Hole-Blocking Layer-Free Planar Halide Perovskite Thin-Film Solar Cells, Commun., 6, 6700, 2015.
  58. Liang W., Huang J., Wang Z., Huang C., Wei Q., Liao C., Ma R., Liu T., Zhu W., and Li Y., Enhancing Efficiency of Organic Solar Cells with Alkyl Diamines Doped PEDOT:PSS, ACS Mater. Lett., 5, 656-663, 2023.
  59. Yan W., Ye S., Li Y., Sun W., Rao H., Liu Z., Bian Z., and Huang C., Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells, Energy Mater., 6, 2016.
  60. Sheibani E., Amini M., Heydari M., Ahangar H., Keshavarzi R., Zhang J., and Mirkhani V., Hole Transport Material Based on Modified N-Annulated Perylene for Efficient and Stable Perovskite Solar Cells, Energy, 194, 279-285, 2019.
  61. Wang L., Sheibani E., Guo Y., Zhang W., Li Y., Liu P., Xu B., Kloo L., and Sun L., Impact of Linking Topology on the Properties of Carbazole-Based Hole-Transport Materials and Their Application in Solid-State Mesoscopic Solar Cells, RRL, 3, 2019.
  62. Sheibani E., Yang L., and Zhang J., Conjugated Polymer for Charge Transporting Applications in Solar Cells, in Organic Electrodes: Fundamental to Advanced Emerging Applications, Springer, 119-135, 2022.
  63. Chowdhury T.A., Zafar M.A.B., Islam M.S.-U., Shahinuzzaman M., Islam M.A., and Khandaker M.U., Stability of Perovskite Solar Cells: Issues and Prospects, RSC Adv., 13, 1787-1810, 2023.
  64. Lyu B., Yang L., Luo Y., Zhang X., and Zhang J., Counter Electrodes for Perovskite Solar Cells: Materials, Interfaces and Device Stability, Mater. Chem. C, 10, 10775-10798, 2022.
  65. Chang C-C., Tao J-H., Tsai C-E., Cheng Y-J., Hsu C-S., Cross-Linked Triarylamine-Based Hole-Transporting Layer for Solution-Processed PEDOT: PSS-Free Inverted Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 10, 21466-21471, 2018.
  66. Don M.F., Ekanayake P., Jennings J.R., Nakajima H., and Lim C.M., Graphite/Carbon Black Counter Electrode Deposition Methods to Improve the Efficiency and Stability of Hole-Transport-Layer-Free Perovskite Solar Cells, ACS Omega, 7, 22830-22838, 2022.
  67. Pitchaiya S., Natarajan M., Santhanam A., Asokan V., Yuvapragasam A., Ramakrishnan V.M., Palanisamy S.E., Sundaram S., and Velauthapillai D., A Review on the Classification of Organic/Inorganic/Carbonaceous Hole Transporting Materials for Perovskite Solar Cell Application, J. Chem., 13, 2526-2557, 2020.
  68. Wang R., Mujahid M., Duan Y., Wang Z.K., Xue J., and Yang Y., A Review of Perovskites Solar Cell Stability, Funct. Mater., 29, 1808843, 2019.
  69. Tisdale J.T., Muckley E., Ahmadi M., Smith T., Seal C., Lukosi E., Ivanov I.N., and Hu B., Dynamic Impact of Electrode Materials on Interface of Single-Crystalline Methylammonium Lead Bromide Perovskite, Mater. Interfaces, 5, 1800476, 2018.
  70. Domanski K., Correa-Baena J.-P., Mine N., Nazeeruddin M.K., Abate A., Saliba M., Tress W., Hagfeldt A., and Grätzel M.J.A., Not All that Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells, ACS Nano, 10, 6306-6314, 2016.
  71. Guerrero A., You J., Aranda C., Kang Y.S., Garcia-Belmonte G., Zhou H., Bisquert J., and Yang Y.J.A., Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells, ACS Nano, 10, 218-224, 2016.
  72. Sanehira E.M., Tremolet de Villers B.J., Schulz P., Reese M.O., Ferrere S., Zhu K., Lin L.Y., Berry J.J., and Luther J.M., Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MooX/Al for Hole Collection, ACS Energy Lett., 1, 38-45, 2016.
  73. Kaltenbrunner M., Adam G., Głowacki E.D., Drack M., Schwödiauer R., Leonat L., Apaydin D.H., Groiss H., Scharber M.C., and White M.S., Flexible High Power-Per-Weight Perovskite Solar Cells with Chromium Oxide–Metal Contacts for Improved Stability in Air, Mater., 14, 1032-1039, 2015.
  74. You J., Meng L., Song T.-B., Guo T.-F., Yang Y., Chang W.-H., Hong Z., Chen H., Zhou H., and Chen Q., Improved Air Stability of Perovskite Solar Cells via Solution-Processed Metal Oxide Transport Layers, Nanotechnol., 11, 75-81, 2016.
  75. Jeng J.Y., Chiang Y.F., Lee M.H., Peng S.R., Guo T.F., Chen P., and Wen T.C., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells, Adv Mater., 25, 3727-3732, 2013.
  76. Mei A., Li X., Liu L., Ku Z., Liu T., Rong Y., Xu M., Hu M., Chen J., and Yang Y., A Hole-Conductor–Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability, Science, 345, 295-298, 2014.
  77. Etgar L., Gao P., Xue Z., Peng Q., Chandiran A.K., Liu B., Nazeeruddin M.K., and Grätzel M., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells, Am. Chem. Soc., 134, 17396-17399, 2012.
  78. Zhao J., Zheng X., Deng Y., Li T., Shao Y., Gruverman A., Shield J., and Huang J., Is Cu A Stable Electrode Material In Hybrid Perovskite Solar Cells for a 30-Year Lifetime?, Energy Environ. Sci., 9, 3650-3656, 2016.
  79. Venkatesan S., Lin W.-H., Hsu T.-H., Teng H., and Lee Y., Indoor Dye-Sensitized Solar Cells with Efficiencies Surpassing 26% Using Polymeric Counter Electrodes, ACS Sustain. Chem. Eng., 10, 2473-2483, 2022.
  80. Pan H., Zhao X., Gong X., Li H., Ladi N.H., Zhang X.L., Huang W., Ahmad S., Ding L., Shen Y., Wang M., and Fu Y., Advances in Design Engineering and Merits of Electron Transporting Layers in Perovskite Solar Cells, Horiz., 7, 2276-2291, 2020.
  81. Olthof S. and Riedl T., Metal-Oxide Interface Materials for Organic and Perovskite Solar Cells, In World Scientific Reference of Hybrid Materials, Volume 2: Devices from Hybrid and Organic Materials, World Scientific, 61-104, 2019.
  82. Song D.H., Jang M.H., Lee M.H., Heo J.H., Park J.K., Sung S.-J., Kim D.-H., Hong K.-H., and Im S.H., A Discussion on the Origin and Solutions of Hysteresis in Perovskite Hybrid Solar Cells, Phys. D, 49, 473001, 2016.
  83. Amri K., Belghouthi R., Aillerie M., and Gharbi R., Guidelines for the Design of High-Performance Perovskite Based Solar Cells, Key Eng. Mater., 922, 95-105, 2022.
  84. Kumar A., Ojha S.K., Vyas N., and Ojha A.K., Designing Organic Electron Transport Materials for Stable and Efficient Performance of Perovskite Solar Cells: A Theoretical Study, ACS Omega, 6, 7086-7093, 2021.
  85. Oishi A.H., Anjum M.T., Islam M.M., and Nayan M.F., Impact of Absorber Layer Thickness on Perovskite Solar Cell Efficiency: A Performance Analysis, J. Electr. Eng., 7, 48-51, 2023.
  86. Gil B., Yun A. J., Lim J., Cho J., Kim B., Ryu S., Kim J., and Park B., Design of SnO2 Electron Transport Layer in Perovskite Solar Cells to Achieve 2000 h Stability under 1 Sun Illumination and 85°C, Mater. Interfaces, 10, 2023.
  87. Lee Y.H., Luo J., Son M.K., Gao P., Cho K.T., Seo J., Zakeeruddin S.M., Gratzel M., and Nazeeruddin M.K., Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells, Adv Mater., 28, 3966-3972, 2016.
  88. Yang W.S., Noh J.H., Jeon N.J., Kim Y.C., Ryu S., Seo J., and Seok S.I., High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange, Science, 348, 1234-1237, 2015.
  89. Yang G., Tao H., Qin P., Ke W., and Fang G., Recent Progress in Electron Transport Layers for Efficient Perovskite Solar Cells, Mater. Chem., 4, 3970-3990, 2016.
  90. Ball J.M., Lee M.M., Hey A., and Snaith H.J., Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells, Energy Environ. Sci., 6, 2013.
  91. Ke W., Fang G., Liu Q., Xiong L., Qin P., Tao H., Wang J., Lei H., Li B., Wan J., Yang G., and Yan Y., Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells, Am. Chem. Soc., 137, 6730-6733, 2015.
  92. Barbe J., Tietze M.L., Neophytou M., Murali B., Alarousu E., Labban A.E., Abulikemu M., Yue W., Mohammed O.F., McCulloch I., Amassian A., and Del Gobbo S., Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells, ACS Appl. Mater., 9, 11828-11836, 2017.
  93. Pinpithak P., Chen H.-W., Kulkarni A., Sanehira Y., Ikegami M., and Miyasaka T., Low-Temperature and Ambient Air Processes of Amorphous SnOx-Based Mixed Halide Perovskite Planar Solar Cell, Lett., 46, 382-384, 2017.
  94. Mazaheri L., Mirabedini S.M., Esfandeh M., and Pazokifard S., Surface Modification of Silica Nanoparticles with Titanium Tetraisopropoxide and Evaluation of Their Photocatalytic Activity, J. Polym. Sci. Technol. (Persian), 25, 221-230, 2012.
  95. Malinkiewicz O., Yella A., Lee Y.H., Espallargas G.M., Graetzel M., Nazeeruddin M.K., and Bolink H.J., Perovskite Solar Cells Employing Organic Charge-Transport Layers, Photonics, 8, 128-132, 2013.
  96. Chen B., Rudd P.N., Yang S., Yuan Y., and Huang J., Imperfections and Their Passivation in Halide Perovskite Solar Cells, Soc. Rev., 48, 3842-3867, 2019.
  97. Djurišić A.B., Liu F.Z., Tam H.W., Wong M.K., Ng A., Surya C., Chen W., and He Z.B., Perovskite Solar Cells-An Overview of Critical Issues, Quantum. Electron., 53, 1-37, 2017.
  98. Shao Y., Xiao Z., Bi C., Yuan Y., and Huang J., Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells, Commun., 5, 5784, 2014.
  99. Liu X., Liu Z., Ye H., Tu Y., Sun B., Tan X., Shi T., Tang Z., and Liao G., Novel Efficient C60-Based Inverted Perovskite Solar Cells with Negligible Hysteresis, Acta, 288, 115-125, 2018.
  100. Sherafatipour G., Benduhn J., Patil B.R., Ahmadpour M., Spoltore D., Rubahn H.G., Vandewal K., and Madsen M., Degradation Pathways in standard and Inverted DBP-C(70) Based Organic Solar Cells, Rep., 9, 4024, 2019.
  101. Zheng Y., Kong J., Huang D., Shi W., McMillon-Brown L., Katz H.E., Yu J., and Taylor A.D., Spray Coating of the PCBM Electron Transport Layer Significantly Improves the Efficiency of Pin Planar Perovskite Solar Cells, Nanoscale, 10, 11342-11348, 2018.
  102. Pitchaiya S., Natarajan M., Santhanam A., Asokan V., Yuvapragasam A., Ramakrishnan V.M., Palanisamy S.E., Sundaram S., and Velauthapillai D., A Review on the Classification of Organic/Inorganic/Carbonaceous Hole Transporting Materials for Perovskite Solar Cell Application, J. Chem., 13, 2526-2557, 2020.
  103. Chen W., Shi Y., Wang Y., Feng X., Djurišić A. B., Woo H.Y., Guo X., and He Z., n-Type Conjugated Polymer as Efficient Electron Transport Layer for Planar Inverted Perovskite Solar Cells with Power Conversion Efficiency of 20.86%, Nano Energy, 68, 2020.
  104. Bhosale S.V., Kalyankar M.B., Bhosale S.V., Langford S.J., Reid E.F., and Hogan C.F., The Synthesis of Novel Core-Substituted Naphthalene Diimides via Suzuki Cross-Coupling and Their Properties, New J. Chem., 33, 2009.
  105. Ali S., Jameel M.A., Gupta A., Langford S.J., and Shafiei M., Capacitive Humidity Sensing Performance of Naphthalene Diimide Derivatives at Ambient Temperature, Met., 275, 2021.
  106. Xiong Y., Ye L., and Zhang C., Eco-Friendly Solution Processing of All-Polymer Solar Cells: Recent Advances and future Perspective, Polym. Sci., 60, 945-960, 2021.
  107. Jameel M.A., Yang T.C.-J., Wilson G.J., Evans R.A., Gupta A., and Langford S.J., Naphthalene Diimide-Based Electron Transport Materials for Perovskite Solar Cells, Mater. Chem. A, 9, 27170-27192, 2021.
  108. Wang D., Ye T., and Zhang Y., Recent Advances of Non-fullerene Organic Electron Transport Materials in Perovskite Solar Cells, Mater. Chem., 8, 20819-20848, 2020.
  109. Li X., Haghshenas M., Wang L., Huang J., Sheibani E., Yuan S., Luo X., Chen X., Wei C., and Xiang H., A Multifunctional Small-Molecule Hole-Transporting Material Enables Perovskite QLEDs with EQE Exceeding 20%, ACS Energy Lett., 8, 1445-1454, 2023.
  110. Han D., Han Y., Kim Y., Lee J.-W., Jeong D., Park H., Kim G.-U., Kim F.S., and Kim B.J., Efficient, Thermally Stable Poly(3-hexylthiophene)-Based Organic Solar Cells Achieved by Non-covalently Fused-Ring Small Molecule Acceptors, Mater. Chem., 10, 640-650, 2022.
  111. Chang C.-Y., Tsai B.-C., Lin M.-Z., Huang Y.-C., and Tsao C.-S., An Integrated Approach towards the Fabrication of Highly Efficient and Long-Term Stable Perovskite Nanowire Solar Cells, Mater. Chem., 5, 22824-22833, 2017.
  112. Said A.A., Xie J., Wang Y., Wang Z., Zhou Y., Zhao K., Gao W.B., Michinobu T., and Zhang Q., Efficient Inverted Perovskite Solar Cells by Employing n-Type (D-A(1) -D-A(2)) Polymers as Electron Transporting Layer, Small, 15, e1803339, 2019.
  113. Wang W., Yuan J., Shi G., Zhu X., Shi S., Liu Z., Han L., Wang H.Q., and Ma W., Inverted Planar Heterojunction Perovskite Solar Cells Employing Polymer as the Electron Conductor, ACS Appl. Mater., 7, 3994-9, 2015.
  114. Al Kurdi K., McCarthy D.P., McMeekin D.P., and Furer S.O., Tremblay M.-H., Barlow S., Bach U., and Marder S.R., A Naphthalene Diimide Side-Chain Polymer as an Electron-Extraction Layer for Stable Perovskite Solar Cells, Chem. Front., 5, 450-457, 2021.
  115. Peng S., Miao J., Murtaza I., Zhao L., Hu Z., Liu M., Yang T., Liang Y., Meng H., and Huang W., An Efficient and Thickness Insensitive Cathode Interface Material for High Performance Inverted Perovskite Solar Cells with 17.27% Efficiency, Mater. Chem. C, 5, 5949-5955, 2017.
  116. Heo J.H., Lee S.-C., Jung S.-K., Kwon O.P., and Im S.H., Efficient and Thermally Stable Inverted Perovskite Solar Cells by Introduction of Non-fullerene Electron Transporting Materials, Mater. Chem. A., 5, 20615-20622, 2017.
  117. Jung S.K., Heo J.H., Lee D.W., Lee S.H., Lee S.C., Yoon W., Yun H., Kim D., Kim J.H., Im S.H., and Kwon O.P., Homochiral Asymmetric-Shaped Electron-Transporting Materials for Efficient Non-fullerene Perovskite Solar Cells, ChemSusChem, 12, 224-230, 2018.
  118. Jung S.-K., Heo J.H., Lee D. W., Lee S.-C., Lee S.-H., Yoon W., Yun H., Im S.H., Kim J.H., and Kwon O.P., Nonfullerene Electron Transporting Material Based on Naphthalene Diimide Small Molecule for Highly Stable Perovskite Solar Cells with Efficiency Exceeding 20%, Funct. Mater., 28, 2018.
  119. Li L., Wu Y., Li E., Shen C., Zhang H., Xu X., Wu G., Cai M., and Zhu W.H., Self-Assembled Naphthalimide Derivatives as an Efficient and Low-Cost Electron Extraction Layer for n-i-p Perovskite Solar Cells, Commun., 55, 13239-13242, 2019.
  120. Kim S.Y., Cho S.J., Byeon S.E., He X., and Yoon H.J., Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells, Energy Mater., 10, 2020.
  121. Jung S.K., Heo J.H., Oh B.M., Lee J.B., Park S.H., Yoon W., Song Y., Yun H., Kim J.H., Im S.H., and Kwon O.P., Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells, Funct. Mater., 30, 2020.
  122. Jia T., Sun C., Xu R., Chen Z., Yin Q., Jin Y., Yip H. L., Huang F., and Cao Y., Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells, ACS Appl. Mater., 9, 36070-36081, 2017.
  123. Ning J., Zhu Y., Hu Z., Shi Y., Ali M.U., He J., He Y., Yan F., Yang S., and Miao J., Gaining Insight into the Effect of Organic Interface Layer on Suppressing Ion Migration Induced Interfacial Degradation in Perovskite Solar Cells, Funct. Mater., 30, 2000837, 2020.
  124. Chen H., Guo Y., Mao Z., Yu G., Huang J., Zhao Y., and Liu Y., Naphthalenediimide-Based Copolymers Incorporating Vinyl-Linkages for High-Performance Ambipolar Field-Effect Transistors and Complementary-Like Inverters under Air, Mater., 25, 3589-3596, 2013.
  125. Seo Y.H., Yeo J.S., Myoung N., Yim S.Y., Kang M., Kim D.Y., and Na S.I., Blending of n-Type Semiconducting Polymer and PC61BM for an Efficient Electron-Selective Material to Boost the Performance of the Planar Perovskite Solar Cell, ACS Appl. Mater., 8, 12822-12829, 2016.
  126. Shao S., Chen Z., Fang H.H., ten Brink G.H., Bartesaghi D., Adjokatse S., Koster L.J.A., Kooi B.J., Facchetti A., and Loi M.A., n-Type Polymers as Electron Extraction Layers in Hybrid Perovskite Solar Cells with Improved Ambient Stability, Mater. Chem., 4, 2419-2426, 2016.
  127. Kim H.I., Kim M.-J., Choi K., Lim C., Kim Y.-H., Kwon S.-K., and Park T., Improving the Performance and Stability of Inverted Planar Flexible Perovskite Solar Cells Employing a Novel NDI-Based Polymer as the Electron Transport Layer, Energy Mater., 8, 2018.
  128. Yan W., Wang Z., Gong Y., Guo S., Jiang J., Chen J., Tang C., Xia R., Huang W., and Xin H., Naphthalene-Diimide Selenophene Copolymers as Efficient Solution-Processable Electron-Transporting Material for Perovskite Solar Cells, Electron., 67, 208-214, 2019.
  129. Sun C., Wu Z., Yip H.-L., Zhang H., Jiang X.-F., Xue Q., Hu Z., Hu Z., Shen Y., Wang M., Huang F., and Cao Y., Amino-Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High-Performance Planar-Heterojunction Perovskite Solar Cells, Energy Mater., 6, 2016.
  130. Tian L., Hu Z., Liu X., Liu Z., Guo P., Xu B., Xue Q., Yip H. L., Huang F., and Cao Y., Fluoro- and Amino-Functionalized Conjugated Polymers as Electron Transport Materials for Perovskite Solar Cells with Improved Efficiency and Stability, ACS Appl. Mater., 11, 5289-5297, 2019.
  131. Zhu Z., Chueh C.C., Zhang G., Huang F., Yan H., and Jen A.K., Improved Ambient-Stable Perovskite Solar Cells Enabled by a Hybrid Polymeric Electron-Transporting Layer, ChemSusChem, 9, 2586-2591, 2016.
  132. Luzio A., Fazzi D., Natali D., Giussani E., Baeg K., Chen Z., Noh Y., Facchetti A., and Caironi M., Charge Transport Characteristics of Naphthalenediimide-Based Co-polymers with Different Oligothiophene Donor Units, Funct. Mater., 24, 1151-1162, 2014.
  133. Ge C., Wu W., Hu L., Hu Y., Zhou Y., Li W.-S., and Gao X., Core-Expanded Naphthalenediimide Derivatives as Non-fullerene Electron Transport Materials for Inverted Perovskite Solar Cells, Electron., 61, 113-118, 2018.
  134. Said A.A., Wagalgave S.M., Xie J., Puyad A.L., Chen W., Wang Z., Bhosale S.V., Bhosale S.V., and Zhang Q., NDI-Based Small Molecules as Electron Transporting Layers in Solution-Processed Planar Perovskite Solar Cells, Solid State Chem., 270, 51-57, 2019.
  135. Zhang Y., Wan Q., Guo X., Li W., Guo B., Zhang M., and Li Y., Synthesis and Photovoltaic Properties of an n-Type Two-Dimension-Conjugated Polymer Based on Perylene Diimide and Benzodithiophene with Thiophene Conjugated Side Chains, Mater. Chem., 3, 18442-18449, 2015.
  136. Hu J., Liu X., Wang K., Wu M., Huang H., Wu D., and Xia J., A Perylene Diimide Electron Acceptor with a Triphenylamine Core: Promoting Photovoltaic Performance via Hot Spin-Coating, Mater. Chem. C, 8, 2135-2141, 2020.
  137. Akbulatov A.F., Frolova L.A., Griffin M.P., Gearba I.R., Dolocan A., Vanden Bout D.A., Tsarev S., Katz E.A., Shestakov A.F., Stevenson K.J., and Troshin P.A., Effect of Electron-Transport Material on Light-Induced Degradation of Inverted Planar Junction Perovskite Solar Cells, Energy Mater., 7, 1700476, 2017.
  138. Wang Y., Yan Z., Guo H., Uddin M.A., Ling S., Zhou X., Su H., Dai J., Woo H.Y., and Guo X., Effects of Bithiophene Imide Fusion on the Device Performance of Organic Thin-Film Transistors and All-Polymer Solar Cells, Chem., Int. Ed. Engl., 56, 15304-15308, 2017.
  139. Guo Q., Xu Y., Xiao B., Zhang B., Zhou E., Wang F., Bai Y., Hayat T., Alsaedi A., and Tan Z., Effect of Energy Alignment, Electron Mobility, and Film Morphology of Perylene Diimide Based Polymers as Electron Transport Layer on the Performance of Perovskite Solar Cells, ACS Appl. Mater., 9, 10983-10991, 2017.
  140. Meng F., Liu K., Dai S., Shi J., Zhang H., Xu X., Li D., and Zhan X., A Perylene Diimide Based Polymer: A Dual Function Interfacial Material for Efficient Perovskite Solar Cells, Chem. Front., 1, 1079-1086, 2017.
  141. Zhan X., Tan Z., Domercq B., An Z., Zhang X., Barlow S., Li Y., Zhu D., Kippelen B., and Marder S.R., A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells, Am. Chem. Soc., 129, 7246-7247, 2007.
  142. Zhang M., Li T., Zheng G., Li L., Qin M., Zhang S., Zhou H., and Zhan X., An Amino-Substituted Perylene Diimide Polymer for Conventional Perovskite Solar Cells, Chem. Front., 1, 2078-2084, 2017.
  143. Yang J., Xiao B., Tajima K., Nakano M., Takimiya K., Tang A., and Zhou E., Comparison Among Perylene Diimide (PDI), Naphthalene Diimide (NDI), and Naphthodithiophene Diimide (NDTI) Based n-Type Polymers for All-Polymer Solar Cells Application, Macromolecules, 50, 3179-3185, 2017.
  144. Min J., Zhang Z.-G., Hou Y., Ramirez Quiroz C.O., Przybilla T., Bronnbauer C., Guo F., Forberich K., Azimi H., Ameri T., Spiecker E., Li Y., and Brabec C.J., Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance, Mater., 27, 227-234, 2014.
  145. Cheng M., Li Y., Liu P., Zhang F., Hajian A., Wang H., Li J., Wang L., Kloo L., and Yang X., A Perylenediimide Tetramer-Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell, Solar RRL, 1, 1700046, 2017.
  146. Jiang K., Wu F., Yu H., Yao Y., Zhang G., Zhu L., and Yan H., A Perylene Diimide-Based Electron Transport Layer Enabling Efficient Inverted Perovskite Solar Cells, Mater. Chem., 6, 16868-16873, 2018.
  147. Wan L., Zhang W., Wu Y., Li X., Song C., He Y., Zhang W., and Fang J., Efficient Light Harvesting with a Nanostructured Organic Electron-Transporting Layer in Perovskite Solar Cells, Nanoscale, 11, 9281-9286, 2019.
  148. Zheng M., Miao Y., Syed A.A., Chen C., Yang X., Ding L., Li H., and Cheng M., Spatial Configuration Engineering of Perylenediimide-Based Non-fullerene Electron Transport Materials for Efficient Inverted Perovskite Solar Cells, Energy Chem., 56, 374-382, 2021.
  149. Wu J.-L., Huang W.-K., Chang Y.-C., Tsai B.-C., Hsiao Y.-C., Chang C.-Y., Chen C.-T., and Chen C.-T., Simple Mono-Halogenated Perylene Diimides as Non-fullerene Electron Transporting Materials in Inverted Perovskite Solar Cells with ZnO Nanoparticle Cathode Buffer Layers, Mater. Chem., 5, 12811-12821, 2017.
  150. Thubthong K., Kumnorkaew P., Kaewprajak A., Lohawet K., Saennawa W., Promarak V., and Infahsaeng Y., Charge Transport in Perylene Based Electron Transporting Layer for Perovskite Solar Cells, Thin Solid Films, 741, 139012, 2022.
  151. Jung S.K., Lee D.S., Ann M.H., Im S.H., Kim J.H., and Kwon O.P., Non-fullerene Organic Electron-Transporting Materials for Perovskite Solar Cells, ChemSusChem, 11, 3882-3892, 2018.
  152. Liao M., Duan J., Peng P., Zhang J., and Zhou M., Progress in the Synthesis of Imide-Based n-Type Polymer Semiconductor Materials, RSC Adv., 10, 41764-41779, 2020.
  153. Sun H., Tang Y., Koh C. W., Ling S., Wang R., Yang K., Yu J., Shi Y., Wang Y., Woo H. Y., and Guo X., High-Performance All-Polymer Solar Cells Enabled by an n-Type Polymer Based on a Fluorinated Imide-Functionalized Arene, Adv Mater, 31, e1807220, 2019.
  154. Li F., Yuan J., Ling X., Zhang Y., Yang Y., Cheung S. H., Ho C. H.Y., Gao X., and Ma W., A Universal Strategy to Utilize Polymeric Semiconductors for Perovskite Solar Cells with Enhanced Efficiency and Longevity, Funct. Mater., 28, 2018.
  155. Collavini S., Cabrera-Espinoza A., and Delgado J.L., Organic Polymers as Additives in Perovskite Solar Cells, Macromolecules, 54, 5451-5463, 2021.