Preparation of Conducting Fibres from Cellulose and Silk by Polypyrrole Coating

S. Hossein Hosseini¹* and Ali Pairovi²

(1) Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, I.R. Iran
(2) Department of Chemistry, Faculty of Technical and Engineering, Azad University
(Shahr-e-Ray Unit), Tehran, I.R. Iran

Received 18 August 2004; accepted 30 August 2005

A B S T R A C T

A cellulose fibre (e.g., cotton) and a protein fibre (e.g., silk), after undergoing pretreatment and activating stages, were coated by conductive polymers such as polypyrrole by two methods: Vapour and liquid phases. The value of penetration of conductive polymer into fibres by scanning electron microscope (SEM) was determined. Then assessments were made on physical properties and optimization of the value and percent of coating by these properties. Electronic images of SEM showed that vapour or gas coating is more desired, as gas penetration into fibres realized better. Electrical properties of produced fibres are by a four-probe method and optimized value on properties and suitable conductivity were obtained. The polymer conductivity of fibres after several washings for cotton and silk fibres were measured to be 6.4×10⁻⁴ S/cm and 3.2×10⁻⁴ S/cm, respectively. Heat studies of differential scanning calorimetry (DSC) also showed an increase of heat resistance of both coated fibres.

INTRODUCTION

Several works have been devoted to the coating of fibres or fibrous materials with conducting electroactive polymers (CEP). All these works involve a vapour-phase treatment of oxidant-containing carriers with the monomers [1]. Polymers with conjugated π-electron backbones can be oxidized or reduced more easily and more reversibly than conventional polymers. Dopants, which act as charge transfer agents, affect this oxidation or reduction process and render these polymers conductive.

Key Words:
conducting fibre;
polypyrrole;
cotton;
silk;
coating.
The ultimate goal of electrically conductive polymer research is to combine the processability of polymers with the electronic properties of metal or semi-conductors [2]. Unfortunately, most of these conductive polymers are intractable and cannot be processed into useful articles. This is particularly true for polypyrrole (PPy) and polyaniline (PANi), which are preferred for their high conductivity and stability under environmental conditions [3, 4].

Metal coated fabrics [5] and carbon filled or copper sulphide textile fibres are used to impart various degrees of conductivity to polymer structures [3]. A PPy-carbon fibre composite with a carbon fibre content of 15-20% was prepared by the chemical polymerization of pyrrole [6]. The resulting composite has tensile strength and good thermal stability, and can be used as a cathode material for a rechargeable battery, where carbon fibres act as an electrically conductive skeletal electrode for current collection with a specific capacity of 91 mA h/g [6]. Electrically conductive composites have been prepared by treating with oxidizing agents and exposing them to pyrrole, depositing a substantial amount of conductive polymer within the interstices of the material [7]. This process produces conductive textiles, but the conductivity is limited by the irregular nature of conductive polymer layer.

Milliken research corporation has developed an industrially feasible process for polymerizing pyrrole on the surface of fibres, yarns and fabrics, encasing individual fibre of textile assembly inside a smooth, coherent coating of electrically conductive polymer [3,8]. This can be achieved on any substrate, including fabrics, yarns, or fibres of quartz, glass, silicon, carbide, PEEK, Kevlar, Nomex, Spectra, polypropylene, polyester, nylon, Orlon, or cotton, without significantly affecting the strength or tensile properties of material [9,3,8]. The aging characteristics of these electrically conductive textile composites are equal to or better than electrochemically produced free-standing films of the conductive polymers and they depend on the dopant used [3,8,10]. The performance of a polymer structure containing these polypyrrole treated textiles depends on the stress transfer between the fibres and the matrix, controlled by interfacial adhesion [11]. The resulting conductive composite material shows good thermal stability of conductivity within the range of 170°C [12].

We set up this research by knowing that these conductive textiles represent a new formable PPy composite and promise a much wider application of electrically conductive organic polymers. The resistance of composite material was found to decrease with increasing concentration of FeCl₃ in the thread, and the polymerization temperature. Similarly, cotton thread was saturated with FeCl₃ in acetonitrile, and then exposed to pyrrole vapour which resulted in polymerization of the cotton and silk surface.

EXPERIMENTAL

Reagent and Materials

Cotton yarn with a yarn count 20 tex was obtained from BAF KAR factory of Iran. Silk yarn with a yarn count 116/2 tex was obtained from Iranian natural silk. Anhydrous (98%) FeCl₃ was produced from Merck as an oxidant. Acetonitrile (Merck) was dried on silica gel and distilled over phosphoroxide in the presence of nitrogen gas. HCl 37% was purchased from Merck and one molar solution was prepared from it. Sodium hydroxide was purchased from Merck. Pyrrole (Merck) was dried with NaOH and fractionally distilled under reduced pressure from sodium or CaH₂. Nitrogen gas was used with 99.95 % purity.

Instrumentation

Electrical conductivity of coated fibres was measured at room temperature by a four-probe technique (ASTM Standards, F 43-93). Raw cotton and silk yarns and their coated fibres were secured on sample mounts with small drops of metallic silver paint. They were coated with gold using a fisons sputter coater SC7610. A LEO 440i SEM was used to observe the textile surface textures and to approximate the fibre diameters. Dynamic thermogravimetric analysis (TGA) of these coated fibres were made with a Perkin-Elmer Pyris 1 TGA at a heating rate of 20°C/min in air. Differential scanning calorimetry (DSC) of these coated fibres were made with a PL-DSC at a heating rate of 10°C/min in air. Tensile strength fibre was measured by Instron tensile strength meter and elongation tester TE-500 made by Fara Yab Co.

Castisizing of Cotton

Cotton should undergo washing castisizing operations,
before starting the operation for coating process. Cotton was mercerized without tension. First, 1 g of cotton is weighed and a mixture with L:R=50:1 proportion is prepared, then by adding 20% NaOH solution, the environment pH is established in 10-11 range. The product is placed in bath for 2 min at temperature below 15°C. The product is removed out of the bath, rinsed with water and dried in standard conditions of 65% relative humidity at 20°C. This operation on the cotton goods and its mixture leads to an increase in stability and absorption of reagents and both these characteristics are effective in coating with conductive polymer processes.

Soaking the Fibres by Initiator
In the beginning, a saturated solution of FeCl₃ anhydrous in 30 mL dried acetonitrile is prepared. Then fibres were in the above saturation solution and held for 1 h. The fibres were taken out of the solvent and dried carefully in oven.

Coating Fibres in Vapour Phase
The coating stages in the vapour phase are shown in Figure 1. According to this figure, the fibres are prepared then enter into a bi-layer glass pipes (4) in which, nitrogen gas is acted as carrier for pyrrole, then it is passed over bi-layer glass pipe and then fixed on test cell and bobbin (8). Nitrogen gas arrives into the first gas wash (1) containing pyrogallol solution, then enters into the second gas wash (2) containing concentrated sulphuric acid. In the next stage, nitrogen gas enters into a 25 mL three-necked flask (3), containing pyrrole. The nitrogen gas makes bubbles in pyrrole, causing its evaporation. The pyrrole vapour exits the three-necked flask together with nitrogen gas. The second opening is for adding pyrrole to the three-necked flask.

The nitrogen gas containing pyrrole or aniline enters into the two-wall glass (4) pipe. This glass pipe has a water inlet and outlet that for pyrrole hot water flows in the second wall till homogeneous. So, we would have suitable environment in heat terms being established. The monomer sits on the surface of fibres smeared with oxidizers and the polymerization takes place on fibres. We could control the passing time or polymerization time in polymerization process by different valves. To have a better performance of both functions, two valves have been fixed in the beginning and ending points of the bi-layer glass pipe (1) and (2) and connect them to the circulator motor via a glass pipe. After entry of gas into the bi-layer glass pipe, the

Figure 1. A scheme of coating system with evaporation method in which: (1) the first gas wash (containing pyrogallol solution), (2) second gas wash (containing concentrated sulphuric), (3) 25 mL three-necked flask contain monomer, (4) bi-layer glass pipes with the inlet and outlet in the second wall, (5) two-necked flask, (6) conductivity measurement cell, (7) bobbin of prepared string, (8) bobbin of coated strings [13,14].
valve (1) is closed and after passage of monomer, the valve (2) would be closed. The gas circulates in the closed path through circulator motor for a few minutes till a homogeneous polymerization takes place on the fibre. Finally, all gases remained enter into the two-opening balloon containing concentrated sulphuric acid which has been employed at the environment to prevent diffusion of pyrrole gas. Then by motion of bobbin (8), the coated string moves and the direction conductivity path is measured by a four-point probe method and then collected on bobbin. This operation continues for production of necessary amounts of the coated strings.

RESULTS AND DISCUSSION

Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)

DSC and TGA thermograms of cotton coated by PPy in vapour phase are given in Figures 2 and 3, respectively. Figure 4 shows STA (DSC and TGA) thermograms for silk coated by PPy. As it is shown in all coated fibres no exothermic peak is observed, but an endothermic peak is produced at 120°C for cotton and at 50 and 350°C for PPy coated silk. The TGA of PPy coated cotton shows a weight loss in three stages. The first stage is range of 50°C and 163°C and shows about 8% loss in weight. This may correspond to loss adsorbed and bound solvent. The second stage of weight loss at 170°C and continued at 365°C during which there was a 40% of weight loss due to the first degradation of polymer. The third stage of weight loss starts at 370°C and continues to up 500°C during which there was a 77.36% of weight loss due to the second degradation of polymer.

Therefore, TGA of coated silk by PPy shows a weight loss in three stages. The first stage range is between 40°C and 280°C and shows about a 5.54% loss in weight. This may correspond to a loss being adsorbed. The second stage of weight loss starts at 280°C and continues to 400°C during which there was a 46.68% of weight loss due to the first degradation of polymer. The third stage of weight loss starts at 400°C and continues up to 600°C during which there was nearly a 70% of weight loss due to the second degradation process of polymer.

Scanning Electron Microscopy

Polymer structure and morphology are greatly affected by electrosynthetic conditions, such as electrode materials, solvent and electrolyte salts, oxygen and water content of the system and the current density used for electropolymerization. Although a quantitative meas-
ure of these effects has not been established, some general observations have been made. Thin films generally appear smooth, whilst thicker samples have a much more uneven textured surface [13]. Lower current densities and potentials used during electropolymerization give rise to smoother films. Scanning electron

Figure 5. SEM Micrographs of (a) cotton crude, (b) cotton coated by PPy and (c) cross-section cotton coated by PPy.

Figure 6. SEM Micrographs of (a) silk crude, (b) silk coated by PPy and (c) cross-section silk coated by PPy.
The microscopy (SEM) of figures shows a monotony, and kind of phase and surface of polymers completely. SEM also shows that the doping/dedoping process is often accompanied by major changes in morphology, perhaps due to swelling caused by the insertion and removal of ions within the polymer matrix. The SEM investigations show polypyrrole is space-filling [14], i.e. non-fibrillar, and non-crystalline [4] and a similar amorphous morphology is also as a typical polythiophene [15]. However, in the case of polythiophene it indicates a basically granular or fibrillar structure.

There is also an evidence to suggest that chemically synthesized polythiophene is crystalline. Figures 5a-c and 6a-c show the images of SEM for PPy coated on cotton and silk either along fibre surface or its cross section. Earlier studies on the surface morphology of fibres coated by PPy have demonstrated their smooth surface. The cross-section of images of conductive fibres shows two phases of the fibres completely clear. So, these fibres have special characterization between fibres and conducting polymers.

Tenacity and Conductivity Measurements

Conductivity of cotton and silk coated by PPy before and after I$_2$ and HCl doping vapours are listed on Table 1. According to Table 1 the conductivity of conductive fibres, is comparable with normal conductive polymers. Physical properties of two groups of fibres have been investigated together, such as, crude fibres and coated fibres by PPy. We have studied tensile strength of the prepared fibres and then statistical comparison is made by software SPSS 2002. Tables 2 and 3 show Anova data and paired samples statistics of cotton and silk fibres coated by PPy, respectively. As shown in the Tables, the tensile strength of the coated fibres in comparison to the crude fibres, not only shows no changes but also in some of the cases it has increased as well.

<table>
<thead>
<tr>
<th>PPy coated on</th>
<th>Before doping</th>
<th>Doping by HCl (g)</th>
<th>Doping by HCl (l), 1 M</th>
<th>Doping by I$_2$ (g)</th>
<th>Doping by I$_2$ (l), sat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>1.4×10^{-5}</td>
<td>2.1×10^{-4}</td>
<td>6.1×10^{-4}</td>
<td>6.2×10^{-3}</td>
<td>3.6×10^{-4}</td>
</tr>
<tr>
<td>Silk</td>
<td>3.1×10^{-5}</td>
<td>4.2×10^{-4}</td>
<td>7.2×10^{-4}</td>
<td>8.0×10^{-3}</td>
<td>6.5×10^{-4}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Sum of squares</th>
<th>df</th>
<th>Mean square</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups (cotton coated by PPy)</td>
<td>710.7</td>
<td>1</td>
<td>710.719</td>
<td>0.572</td>
</tr>
<tr>
<td>Within groups (cotton coated by PPy)</td>
<td>63054.7</td>
<td>29</td>
<td>2174.300</td>
<td>--</td>
</tr>
<tr>
<td>Between groups (silk coated by PPy)</td>
<td>861080.7</td>
<td>2</td>
<td>430540.344</td>
<td>0.196</td>
</tr>
<tr>
<td>Within groups (silk coated by PPy)</td>
<td>22588901</td>
<td>87</td>
<td>259642.540</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 3. Paired samples statistics of cotton and silk fibres coated by PPy.

<table>
<thead>
<tr>
<th>Code</th>
<th>Paired differences</th>
<th>Significance (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>Cotton crude</td>
<td>-164.1935</td>
<td>46.1226</td>
</tr>
<tr>
<td>Pair of cotton and cotton coated by PPy</td>
<td>13.4667</td>
<td>45.3041</td>
</tr>
<tr>
<td>Silk crude</td>
<td>3733.7000</td>
<td>492.3305</td>
</tr>
<tr>
<td>Pair of silk and silk coated by PPy</td>
<td>168.3000</td>
<td>595.5218</td>
</tr>
</tbody>
</table>
CONCLUSION

We have prepared conductive fibres using natural fibres. These fibres have either electrical conductivity or high thermal resistance. The tensile strength of the crude silk is higher than crude cotton. The tensile strength of the conductive silk is better than cotton as well. Simple operation, low cost and sufficient conductivity are advantages of this method.

REFERENCES